Final Solutions

- 1. State whether the following statements are true or false. Please justify your answers.
 - (a) A group cannot be isomorphic to any of its proper subgroups.
 - (b) If every proper subgroup of a group is cyclic, then the group is abelian.

Solution. (a) This statement is **false.** The additive group of integers \mathbb{Z} is isomorphic to each of its proper subgroups of the form $k\mathbb{Z}$, for $k \geq 2$. It can be easily verified that the map

$$\mathbb{Z} \to k\mathbb{Z} : x \mapsto kx, \forall x \in \mathbb{Z}$$

is an isomorphism.

(b) This statement is **false**. A counterexample to the statement is the nonabelian group $D_6 = S_3$. We know that a proper subgroups of D_6 is either of order 2 or 3. Thus, every proper subgroup of D_6 is cyclic.

2. Given a group G, let $S = \{aba^{-1}b^{-1} : a, b \in G\}$. We define the subgroup

 $[G,G] := \langle S \rangle$

to be the commutator subgroup or the derived group of G.

- (a) Show that $[G, G] \lhd G$.
- (b) If $N \triangleleft G$, then show that G/N is abelian if and only if [G, G] < N.

Solution. (a) Let H = [G, G], and denote the product $aba^{-1}b^{-1}$ by [a, b]. First, we observe that for $g \in G$, we have

$$g[a,b]g^{-1} = g(aba^{-1}b^{-1})g^{-1} = (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1} = [gag^{-1}, gbg^{-1}].$$

Moreover, given $h \in H$, we have $h = \prod_{i=1}^{k} [a_i, b_i]$, where $a_i, b_i \in G$. Thus, for any $g \in G$, we have

$$ghg^{-1} = \prod_{i=1}^{k} [ga_ig^{-1}, gb_ig^{-1}] \in H,$$

from which it follows that $H \lhd G$.

(b) This follows from the following arguments.

$$\begin{array}{lll} G \text{ is abelian} & \Longleftrightarrow & aNbN = bNaN, \forall a, b \in G \\ \Leftrightarrow & abN = baN, \forall a, b \in G \\ \Leftrightarrow & (ab)(ba)^{-1} = [a,b] \in N, \forall a, b \in G \\ \Leftrightarrow & [G,G] < N, \end{array} \begin{array}{lll} (\text{By definition of abelian property.}) \\ (\text{By definition of product in } G/N.) \\ (\text{By 2.2 (ii) of Lesson Plan.}) \\ (\text{By definition of the derived group.}) \end{array}$$

and the assertion follows.

3. Given groups G, H, consider the set

 $Hom(G, H) = \{\varphi : G \to H : \varphi \text{ is a homomorphism.}\}\$

- (a) When H is abelian, show that Hom(G, H) forms an abelian group.
- (b) Show that $\operatorname{Hom}(\mathbb{Z},\mathbb{Z}) \cong \mathbb{Z}$ and for $n \geq 2$, show that $\operatorname{Hom}(\mathbb{Z}_n,\mathbb{Z})$ is trivial.

(c) For $m, n \geq 2$, show that $\operatorname{Hom}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \mathbb{Z}_d$, where $d = \operatorname{gcd}(m, n)$.

Solution. (a) Without loss of generality, let us denote the operation on H by + and the identity on H by 0. Given arbitrary $\varphi_1, \varphi_2 \in \text{Hom}(G, H)$, consider the natural binary operation \cdot on Hom(G, H) defined by

$$(\varphi_1 \cdot \varphi_2)(g) = \varphi_1(g) + \varphi_2(g), \, \forall g \in G.$$

Under the operation \cdot , Hom(G, H) forms an abelian group with the trivial homomorphism $\varphi_0 : G \to H$ (i.e., $\varphi_0(g) = 0, \forall g \in G$) as the identity. The inverse of each $\varphi \in \text{Hom}(G, H)$ is the map $-\varphi : G \to H$ defined by $(-\varphi)(g) = -\varphi(g)$, for all $g \in G$. The detailed verification of all group axioms is left as an exercise.

(b) We know from the discussions in class that given $\varphi \in \text{Hom}(G, H)$ and $g \in G$ with $o(g) < \infty$, we have $o(\varphi(g)) \mid o(g)$. Thus, since the order of each nontrivial element in \mathbb{Z} is infinite, we can infer that $\text{Hom}(\mathbb{Z}_n, \mathbb{Z})$ is trivial.

Now, given a $\varphi \in \text{Hom}(\mathbb{Z}, \mathbb{Z})$, if $\varphi(1) = k$ for some $k \in \mathbb{Z}$, then for each $z \in \mathbb{Z}$, we have

$$\varphi(z) = z\varphi(1) = zk.$$

So, any $\varphi \in \text{Hom}(\mathbb{Z}, \mathbb{Z})$ is uniquely determined by the value $\varphi(1)$. Therefore, we have $\text{Hom}(\mathbb{Z}, \mathbb{Z}) = \{\varphi_k : k \in \mathbb{Z}\}$, where $\varphi_k(1) = k \in \mathbb{Z}$. It is a straightforward exercise to verify that the map $\text{Hom}(\mathbb{Z}, \mathbb{Z}) \to \mathbb{Z} : \varphi_k \mapsto k$ is an isomorphism. (Verify this!)

(c) Let $[k]_{\ell}$ denote the residue class $\ell \mathbb{Z} + k$. Since $\mathbb{Z}_m = \langle [1]_m \rangle$, any homomorphism $\varphi : \mathbb{Z}_m \to \mathbb{Z}_n$ is uniquely determined by $\varphi([1]_m)$. Again, we recall the fact that given $\varphi \in \text{Hom}(G, H)$ and $g \in G$ with $o(g) < \infty$, we have $o(\varphi(g)) \mid o(g)$. So, it follows that $o(\varphi([1])) \mid o([1]_m) = m$. Now let $\varphi_k \in \text{Hom}(\mathbb{Z}_m, \mathbb{Z}_n)$ be such that $\varphi([1]_m) = [k]_n$. Consider the map

$$\Psi: \operatorname{Hom}(\mathbb{Z}_m, \mathbb{Z}_n) \to \mathbb{Z}_d: \varphi_k \stackrel{\Psi}{\mapsto} [k]_d.$$

Since $d \mid n, [k]_n = [k']_n \implies [k]_d = [k']_d$, it is a straightforward exercise to check that Ψ is a well-defined epimorphism. (Verify this!)

It remains to be shown that Ψ is injective. First, we observe that:

$$\varphi_k([m]_m) = \varphi_k([0]_m) \quad (\text{Since } m \equiv 0 \pmod{m}).)$$

$$= [0]_n \qquad (\varphi_k \text{ is a homomorphism.})$$

$$= m\varphi_k([1]_m) \quad (\varphi_k \text{ is a homomorphism.})$$

$$= m[k]_n \qquad (\text{By definition of } \varphi_k.)$$

Thus, we have that $mk \equiv 0 \pmod{n}$, and so $mk = n\ell$, for some integer ℓ . Setting m' = m/d and n' = n/d, (*) would imply that:

$$k(m'd) = \ell(n'd) \implies k = \ell n'/m'.$$
(**)

Since gcd(m', n') = 1, we see that $m' \mid \ell$, and so it follows that

$$\ell \in \{m', 2m', \dots, dm'\},\$$

and by (**), we have

$$k \in \{n', 2n', \dots, dn'\}.$$

Since there are exactly d distinct choices for k, we see that Ψ is injective.

4. Consider the map $\varphi : \mathcal{O}(2,\mathbb{R}) \to \mathcal{SO}(3,\mathbb{R})$ defined by

$$\varphi(A) = \begin{bmatrix} A & 0\\ 0 & \det(A) \end{bmatrix},$$

for all $A \in \mathcal{O}(2, \mathbb{R})$.

(a) Show that φ is a monomorphism.

(b) Show that
$$\operatorname{Im} \varphi = \{A \in \operatorname{SO}(3, \mathbb{R}) : A(e_3) = \pm e_3\}$$
, where $e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Solution. (a) φ is clearly well-defined since given matrices $A, B \in O(2, \mathbb{R})$ such that A = B, we have

$$\varphi(A) = \begin{bmatrix} A & 0\\ 0 & \det(A) \end{bmatrix} = \begin{bmatrix} B & 0\\ 0 & \det(B) \end{bmatrix} = \varphi(B)$$

 φ is a homomorphism: Consider $\varphi(AB)$ for arbitrary $A,B\in {\rm O}(2,\mathbb{R}).$ Then we have:

$$\varphi(AB) = \begin{bmatrix} AB & 0\\ 0 & \det(AB) \end{bmatrix}$$
 (By definition of φ .)
$$= \begin{bmatrix} AB & 0\\ 0 & \det(A) \det(B) \end{bmatrix}$$
 (det is a homomorphism.)
$$= \begin{bmatrix} A & 0\\ 0 & \det(A) \end{bmatrix} \begin{bmatrix} B & 0\\ 0 & \det(B) \end{bmatrix}$$
 (By properties of matrix product.)
$$= \varphi(A)\varphi(B)$$
 (By definition of φ .),

which shows that φ is a homomorphism.

 φ is injective: Let I_k be the $k \times k$ identity matrix. We have

$$\ker \varphi = \{A \in \mathcal{O}(2, \mathbb{R}) : \varphi(A) = I_3\}$$
(By definition of ker φ .)
$$= \{A \in \mathcal{O}(2, \mathbb{R}) : \varphi(A) = \begin{bmatrix} I_2 & 0\\ 0 & 1 \end{bmatrix}\}$$
(By definition of I_3 .)
$$= \{A \in \mathcal{O}(2, \mathbb{R}) : A = I_2\}$$
(By definition of φ .)
$$= \{I_2\},$$

which shows that φ is injective.

(b) We see that:

$$\operatorname{Im} \varphi = \{\varphi(A) : A \in \mathcal{O}(2, \mathbb{R})\} \qquad (By \text{ definition of Im.})$$
$$= \{ \begin{bmatrix} A & 0\\ 0 & \det(A) \end{bmatrix} : A \in \mathcal{O}(2, \mathbb{R}) \} \qquad (By \text{ definition of } \varphi.)$$
$$= \{ \begin{bmatrix} A & 0\\ 0 & \pm 1 \end{bmatrix} : A \in \mathcal{O}(2, \mathbb{R}) \}. \qquad (Since \ A \in \mathcal{O}(2, \mathbb{R}).)$$

Now let $S = \{A \in O(2, \mathbb{R}) : A(e_3) = \pm e_3\}$. By (†) it is apparent that given any $A \in \operatorname{Im} \varphi$, we have $A(e_3) = \pm e_3$. Thus, it follows that $\operatorname{Im} \varphi \subset S$.

Now consider any matrix $A \in S$. If $A(e_3) = e_3$, then since $A \in SO(3, \mathbb{R})$, from the discussions in class, it follows A is a rotation about the vector e_3 (along the z-axis) by θ . Thus, A has form

$$A = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0\\ -\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix},$$
(\$)

which implies that $A \in \operatorname{Im} \varphi$. Suppose that $A(e_3) = -e_3$. Since $A \in \operatorname{SO}(3, \mathbb{R})$ represents a rotation about a vector on the unit sphere S^2 centered at origin in \mathbb{R}^3 , A has to be the counterclockwise rotation about the vector $e_2 = (0, 1, 0)$ (along the y-axis) by π . Thus, $A(e_2) = e_2$, and furthermore, this rotation maps $e_1 = (1, 0, 0)$ (along the x-axis) to $-e_1$ (i.e, $A(e_1) = -e_1$). Finally, since A is also linear map, it is completely determined by where it maps the basis elements e_1, e_2, e_3 , and so we have

$$A = \begin{bmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix} \in \operatorname{Im} \varphi.$$

5. (Bonus.) Show that $SO(3, \mathbb{R})$ has no proper normal subgroups.

Solution. Let $R(v,\theta)$ represent the counterclockwise rotation about a vector $v \in S^2$ by an angle θ . It is easy to see any two distinct points x, y (or vectors) in the unit sphere S^2 lie on a unique diameter $D_{x,y} \subset S^2$. Now $D_{x,y}$ cuts S^2 into two hemispheres. Let the vector representing the north pole northern hemisphere be denoted by $V_{x,y}$. Now consider the rotation $R(V_{x,y}, \theta_{x,y})$, where $\theta_{x,y}$ is shorter distance in radians between x and y along the circle $D_{x,y}$. Then it is easy to visualize that

$$R(V_{x,y},\theta_{x,y}) \circ R_{x,\theta} \circ R(V_{x,y},\theta_{x,y})^{-1} = R_{x,\theta}.$$

(Here we are assuming without loss of generality that $R(V_{x,y}, \theta_{x,y})(x) = y$.) In other words, the rotation by a fixed angle about any two distinct vectors in S^2 are conjugate. Therefore, any subgroup H of SO(3, \mathbb{R}) has to contain rotations about all possible points in S^2 , and the assertion follows.