Final Solutions

1. State whether the following statements are true or false. Please justify your
answers.
(a) A group cannot be isomorphic to any of its proper subgroups.
(b) If every proper subgroup of a group is cyclic, then the group is abelian.
Solution. (a) This statement is false. The additive group of integers Z is

isomorphic to each of its proper subgroups of the form kZ, for k > 2. It can be
easily verified that the map

7 — k7 :x v kx,Nv € Z

is an isomorphism.

(b) This statement is false. A counterexample to the statement is the nonabelian
group Dg = S3. We know that a proper subgroups of Dg is either of order 2 or 3.
Thus, every proper subgroup of Dg is cyclic.

2. Given a group G, let S = {aba"'b"! : a,b € G}. We define the subgroup
(G, G] == (5)
to be the commutator subgroup or the derived group of G.

(a) Show that [G,G] < G.
(b) If N <@, then show that G/N is abelian if and only if [G,G] < N.

Solution. (a) Let H = [G, G|, and denote the product aba='b~! by [a,b]. First,
we observe that for g € GG, we have

gla,blg™" = g(aba™'b7 g™ = (gag™)(gbg ") (gag™) " (gbg™ ")t = [gag™", gbg™"].

Moreover, given h € H, we have h = Hle[ai, b;], where a;,b; € G. Thus, for any

g € G, we have
k

ghg™" =T [lgaig™" gbig™"] € H,

i=1
from which it follows that H < G.

(b) This follows from the following arguments.

G is abelian <= aNDN =bNaN,Va,be G (By definition of abelian property.)
<= abN =baN,Va,b e G (By definition of product in G/N.)
< (ab)(ba)™! = [a,b] € N,Va,b e G (By 2.2 (ii) of Lesson Plan.)
<~ |[G,G] <N, (By definition of the derived group.)

and the assertion follows.
3. Given groups G, H, consider the set
Hom(G,H) = {¢: G — H : ¢ is a homomorphism.}

(a) When H is abelian, show that Hom(G, H) forms an abelian group.
(b) Show that Hom(Z,Z) = Z and for n > 2, show that Hom(Z,,, Z) is trivial.



(¢) For m,n > 2, show that Hom(Z,,,Z,) = Z4, where d = ged(m,n).

Solution. (a) Without loss of generality, let us denote the operation on H by +
and the identity on H by 0. Given arbitrary ¢1, po € Hom(G, H), consider the
natural binary operation - on Hom(G, H) defined by

(1 - 92)(9) = ¢1(g) + ¢a(9), Vg € G.

Under the operation -, Hom(G, H) forms an abelian group with the trivial homo-
morphism ¢q : G — H (i.e., ¢o(g) = 0, Vg € G) as the identity. The inverse of
each ¢ € Hom(G, H) is the map —¢ : G — H defined by (—¢)(g9) = —¢(g), for
all g € GG. The detailed verification of all group axioms is left as an exercise.

(b) We know from the discussions in class that given ¢ € Hom(G, H) and g € G
with o(g) < 0o, we have o(¢(g)) | o(g). Thus, since the order of each nontrivial
element in Z is infinite, we can infer that Hom(Z,,, Z) is trivial.

Now, given a ¢ € Hom(Z,Z), if (1) = k for some k € Z, then for each z € Z, we
have

p(z) = zp(1) = zk.
So, any ¢ € Hom(Z,Z) is uniquely determined by the value ¢(1). Therefore, we
have Hom(Z,Z) = {¢x : k € Z}, where (1) = k € Z. It is a straightforward

exercise to verify that the map Hom(Z,Z) — Z : ¢, — k is an isomorphism.
(Verify this!)

(c) Let [k]; denote the residue class (Z+k. Since Z,, = ([1]n), any homomorphism
¢ : Loy — Ly, is uniquely determined by ¢([1],,). Again, we recall the fact that
given ¢ € Hom(G, H) and g € G with o(g) < oo, we have o(¢(g)) | o(g). So,
it follows that o(p([1])) | o([1],,) = m. Now let ¢y € Hom(Z,,, Z,) be such that
©([1]m) = [k]n. Consider the map

U : Hom(Zm, Z) — Za : o1 v [Ka-

Since d | n, [k], = [K'], = [k]a = [K']a, it is a straightforward exercise to check
that W is a well-defined epimorphism. (Verify this!)

It remains to be shown that W is injective. First, we observe that:

or([mlm) = @r([0])  (Since m =0 (mod m).)
= [0], (pk is a homomorphism.)
= mer([1]m) (@k is a homomorphism.)

= mlk], (By definition of ¢y.)

Thus, we have that mk = 0 (mod n), and so mk = nf, for some integer ¢. Setting
m’ =m/d and ' =n/d, (*) would imply that:

k(m'd) =t(n'd) = k=1(n'/m/. (**)
Since ged(m’,n’) = 1, we see that m’ | £, and so it follows that
Ce{m' 2m' ... dm'},

and by (**), we have
ke{n' 2n ... dn'}.

Since there are exactly d distinct choices for k, we see that ¥ is injective.



4. Consider the map ¢ : O(2,R) — SO(3,R) defined by
A 0
o) = {0 det(A)} ’
for all A € O(2,R).

(a) Show that ¢ is a monomorphism.

0
(b) Show that Imp = {A € SO(3,R) : A(e3) = *es}, where e3 = |:0] .
1

Solution. (a) ¢ is clearly well-defined since given matrices A, B € O(2,R) such
that A = B, we have
A 0 B 0
o) = lo det(A)} = {0 det(B)} = ¢(B).

¢ is a homomoprhism: Consider p(AB) for arbitrary A, B € O(2,R). Then we
have:

[AB 0 L
0(AB) = K det(AB)} (By definition of ¢.)
AB 0

— ] (det is a homomorphism.)

| 0 det(A)det(B)

(A0 B 0 : ,
= o det(A)] {0 det(B)] (By properties of matrix product.)

= ¢(A)p(B) (By definition of ¢.),

which shows that ¢ is a homomorphism.

@ is injective: Let [ be the k x k identity matrix. We have

ker p = {A€O(2,R): p(A) =13} (By definition of ker ¢.)
I, 0 -
= {A€O(2,R): p(A) = [0 1}} (By definition of I3.)
= {A€O(2,R): A=1} (By definition of ¢.)
= {[2}7

which shows that ¢ is injective.

(b) We see that:

Imp = {p(A): A€ O(2,R)} (By definition of Im.)
~ (4 0 ]ac0@R) (By definition of ¢.)
= {0 det(n)] : y definition of ¢.

(1)

_ {:f(‘)‘ iOJ . AcO2,R)}.  (Since A € O(2,R).)



Now let S = {A € O(2,R) : A(e3) = *es}. By (1) it is apparent that given any
A € Imp, we have A(e3) = tez. Thus, it follows that Im ¢ C S.
Now consider any matrix A € S. If A(e;) = e, then since A € SO(3,R), from

the discussions in class, it follows A is a rotation about the vector e3 (along the
z-axis) by €. Thus, A has form

cos(f) sin(d) 0
A= [—sin(f) cos(d) 0f, (3)
0 0 1

which implies that A € Im . Suppose that A(e3) = —e3. Since A € SO(3,R)
represents a rotation about a vector on the unit sphere S? centered at origin in R3,
A has to be the counterclockwise rotation about the vector e; = (0,1, 0) (along the
y-axis) by m. Thus, A(es) = ey, and furthermore, this rotation maps e; = (1,0, 0)
(along the z-axis) to -e; (i.e, A(e;) = —e;). Finally, since A is also linear map,
it is completely determined by where it maps the basis elements ey, €5, e3, and so

we have

1 0
0
—1

A=10 € Ime.
0

o = O

. (Bonus.) Show that SO(3,R) has no proper normal subgroups.

Solution. Let R(v,0) represent the counterclockwise rotation about a vector
v € S% by an angle 6. It is easy to see any two distinct points x,y (or vectors)
in the unit sphere S? lie on a unique diameter D, , C S%. Now D, , cuts S? into
two hemispheres. Let the vector representing the north pole northern hemisphere
be denoted by V,,. Now consider the rotation R(V,,.6,,), where 6, , is shorter
distance in radians between x and y along the circle D,,. Then it is easy to
visualize that
R(Vay,0zy) 0 Rug o R(Vyy, Qm,y)_l = Ryp.

(Here we are assuming without loss of generality that R(V,,,0,,)(z) = y.) In
other words, the rotation by a fixed angle about any two distinct vectors in S?
are conjugate. Therefore, any subgroup H of SO(3,R) has to contain rotations
about all possible points in 52, and the assertion follows.



