Final Solutions

1. State whether the following statements are true or false. Please justify your answers.
(a) A group cannot be isomorphic to any of its proper subgroups.
(b) If every proper subgroup of a group is cyclic, then the group is abelian.

Solution. (a) This statement is false. The additive group of integers \mathbb{Z} is isomorphic to each of its proper subgroups of the form $k \mathbb{Z}$, for $k \geq 2$. It can be easily verified that the map

$$
\mathbb{Z} \rightarrow k \mathbb{Z}: x \mapsto k x, \forall x \in \mathbb{Z}
$$

is an isomorphism.
(b) This statement is false. A counterexample to the statement is the nonabelian group $D_{6}=S_{3}$. We know that a proper subgroups of D_{6} is either of order 2 or 3 . Thus, every proper subgroup of D_{6} is cyclic.
2. Given a group G, let $S=\left\{a b a^{-1} b^{-1}: a, b \in G\right\}$. We define the subgroup

$$
[G, G]:=\langle S\rangle
$$

to be the commutator subgroup or the derived group of G.
(a) Show that $[G, G] \triangleleft G$.
(b) If $N \triangleleft G$, then show that G / N is abelian if and only if $[G, G]<N$.

Solution. (a) Let $H=[G, G]$, and denote the product $a b a^{-1} b^{-1}$ by $[a, b]$. First, we observe that for $g \in G$, we have

$$
g[a, b] g^{-1}=g\left(a b a^{-1} b^{-1}\right) g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)\left(g a g^{-1}\right)^{-1}\left(g b g^{-1}\right)^{-1}=\left[g a g^{-1}, g b g^{-1}\right] .
$$

Moreover, given $h \in H$, we have $h=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right]$, where $a_{i}, b_{i} \in G$. Thus, for any $g \in G$, we have

$$
g h g^{-1}=\prod_{i=1}^{k}\left[g a_{i} g^{-1}, g b_{i} g^{-1}\right] \in H
$$

from which it follows that $H \triangleleft G$.
(b) This follows from the following arguments.

$$
\begin{array}{rlr}
G \text { is abelian } & \Longleftrightarrow a N b N=b N a N, \forall a, b \in G \quad & \text { (By definition of abelian property.) } \\
& \Longleftrightarrow a b N=b a N, \forall a, b \in G & \text { (By definition of product in } G / N .) \\
& \Longleftrightarrow(a b)(b a)^{-1}=[a, b] \in N, \forall a, b \in G & \text { (By 2.2 (ii) of Lesson Plan.) } \\
& \Longleftrightarrow[G, G]<N, & \text { (By definition of the derived group.) }
\end{array}
$$

and the assertion follows.
3. Given groups G, H, consider the set

$$
\operatorname{Hom}(G, H)=\{\varphi: G \rightarrow H: \varphi \text { is a homomorphism. }\}
$$

(a) When H is abelian, show that $\operatorname{Hom}(G, H)$ forms an abelian group.
(b) Show that $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$ and for $n \geq 2$, show that $\operatorname{Hom}\left(\mathbb{Z}_{n}, \mathbb{Z}\right)$ is trivial.
(c) For $m, n \geq 2$, show that $\operatorname{Hom}\left(\mathbb{Z}_{m}, \mathbb{Z}_{n}\right) \cong \mathbb{Z}_{d}$, where $d=\operatorname{gcd}(m, n)$.

Solution. (a) Without loss of generality, let us denote the operation on H by + and the identity on H by 0 . Given arbitrary $\varphi_{1}, \varphi_{2} \in \operatorname{Hom}(G, H)$, consider the natural binary operation \cdot on $\operatorname{Hom}(G, H)$ defined by

$$
\left(\varphi_{1} \cdot \varphi_{2}\right)(g)=\varphi_{1}(g)+\varphi_{2}(g), \forall g \in G
$$

Under the operation $\cdot \operatorname{Hom}(G, H)$ forms an abelian group with the trivial homomorphism $\varphi_{0}: G \rightarrow H$ (i.e., $\left.\varphi_{0}(g)=0, \forall g \in G\right)$ as the identity. The inverse of each $\varphi \in \operatorname{Hom}(G, H)$ is the map $-\varphi: G \rightarrow H$ defined by $(-\varphi)(g)=-\varphi(g)$, for all $g \in G$. The detailed verification of all group axioms is left as an exercise.
(b) We know from the discussions in class that given $\varphi \in \operatorname{Hom}(G, H)$ and $g \in G$ with $o(g)<\infty$, we have $o(\varphi(g)) \mid o(g)$. Thus, since the order of each nontrivial element in \mathbb{Z} is infinite, we can infer that $\operatorname{Hom}\left(\mathbb{Z}_{n}, \mathbb{Z}\right)$ is trivial.
Now, given a $\varphi \in \operatorname{Hom}(\mathbb{Z}, \mathbb{Z})$, if $\varphi(1)=k$ for some $k \in \mathbb{Z}$, then for each $z \in \mathbb{Z}$, we have

$$
\varphi(z)=z \varphi(1)=z k .
$$

So, any $\varphi \in \operatorname{Hom}(\mathbb{Z}, \mathbb{Z})$ is uniquely determined by the value $\varphi(1)$. Therefore, we have $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z})=\left\{\varphi_{k}: k \in \mathbb{Z}\right\}$, where $\varphi_{k}(1)=k \in \mathbb{Z}$. It is a straightforward exercise to verify that the map $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \rightarrow \mathbb{Z}: \varphi_{k} \mapsto k$ is an isomorphism. (Verify this!)
(c) Let $[k]_{\ell}$ denote the residue class $\ell \mathbb{Z}+k$. Since $\mathbb{Z}_{m}=\left\langle[1]_{m}\right\rangle$, any homomorphism $\varphi: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ is uniquely determined by $\varphi\left([1]_{m}\right)$. Again, we recall the fact that given $\varphi \in \operatorname{Hom}(G, H)$ and $g \in G$ with $o(g)<\infty$, we have $o(\varphi(g)) \mid o(g)$. So, it follows that $o(\varphi([1])) \mid o\left([1]_{m}\right)=m$. Now let $\varphi_{k} \in \operatorname{Hom}\left(\mathbb{Z}_{m}, \mathbb{Z}_{n}\right)$ be such that $\varphi\left([1]_{m}\right)=[k]_{n}$. Consider the map

$$
\Psi: \operatorname{Hom}\left(\mathbb{Z}_{m}, \mathbb{Z}_{n}\right) \rightarrow \mathbb{Z}_{d}: \varphi_{k} \stackrel{\Psi}{\mapsto}[k]_{d} .
$$

Since $d \mid n,[k]_{n}=\left[k^{\prime}\right]_{n} \Longrightarrow[k]_{d}=\left[k^{\prime}\right]_{d}$, it is a straightforward exercise to check that Ψ is a well-defined epimorphism. (Verify this!)
It remains to be shown that Ψ is injective. First, we observe that:

$$
\begin{align*}
\varphi_{k}\left([m]_{m}\right) & =\varphi_{k}\left([0]_{m}\right) & & (\text { Since } m \equiv 0 \quad(\bmod m) .) \\
& =[0]_{n} & & \left(\varphi_{k} \text { is a homomorphism. }\right) \tag{*}\\
& =m \varphi_{k}\left([1]_{m}\right) & & \left(\varphi_{k} \text { is a homomorphism. }\right) \\
& =m[k]_{n} & & \left(\text { By definition of } \varphi_{k} .\right)
\end{align*}
$$

Thus, we have that $m k \equiv 0(\bmod n)$, and so $m k=n \ell$, for some integer ℓ. Setting $m^{\prime}=m / d$ and $n^{\prime}=n / d,\left({ }^{*}\right)$ would imply that:

$$
\begin{equation*}
k\left(m^{\prime} d\right)=\ell\left(n^{\prime} d\right) \Longrightarrow k=\ell n^{\prime} / m^{\prime} \tag{**}
\end{equation*}
$$

Since $\operatorname{gcd}\left(m^{\prime}, n^{\prime}\right)=1$, we see that $m^{\prime} \mid \ell$, and so it follows that

$$
\ell \in\left\{m^{\prime}, 2 m^{\prime}, \ldots, d m^{\prime}\right\}
$$

and by (**), we have

$$
k \in\left\{n^{\prime}, 2 n^{\prime}, \ldots, d n^{\prime}\right\}
$$

Since there are exactly d distinct choices for k, we see that Ψ is injective.
4. Consider the map $\varphi: \mathrm{O}(2, \mathbb{R}) \rightarrow \mathrm{SO}(3, \mathbb{R})$ defined by

$$
\varphi(A)=\left[\begin{array}{cc}
A & 0 \\
0 & \operatorname{det}(A)
\end{array}\right],
$$

for all $A \in \mathrm{O}(2, \mathbb{R})$.
(a) Show that φ is a monomorphism.
(b) Show that $\operatorname{Im} \varphi=\left\{A \in \operatorname{SO}(3, \mathbb{R}): A\left(e_{3}\right)= \pm e_{3}\right\}$, where $e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.

Solution. (a) φ is clearly well-defined since given matrices $A, B \in \mathrm{O}(2, \mathbb{R})$ such that $A=B$, we have

$$
\varphi(A)=\left[\begin{array}{cc}
A & 0 \\
0 & \operatorname{det}(A)
\end{array}\right]=\left[\begin{array}{cc}
B & 0 \\
0 & \operatorname{det}(B)
\end{array}\right]=\varphi(B) .
$$

φ is a homomoprhism: Consider $\varphi(A B)$ for arbitrary $A, B \in \mathrm{O}(2, \mathbb{R})$. Then we have:

$$
\begin{array}{rlr}
\varphi(A B) & =\left[\begin{array}{cc}
A B & 0 \\
0 & \operatorname{det}(A B)
\end{array}\right] & \\
& =\left[\begin{array}{cc}
A B & 0 \\
0 & \operatorname{det}(A) \operatorname{det}(B)
\end{array}\right] & \text { (det is a homomorphism.) } \\
& =\left[\begin{array}{cc}
A & 0 \\
0 & \operatorname{det}(A)
\end{array}\right]\left[\begin{array}{cc}
B & 0 \\
0 & \operatorname{det}(B)
\end{array}\right] & \text { (By properties of matrix product.) } \\
& =\varphi(A) \varphi(B) & \text { (By definition of } \varphi .)
\end{array}
$$

which shows that φ is a homomorphism.
φ is injective: Let I_{k} be the $k \times k$ identity matrix. We have

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{A \in \mathrm{O}(2, \mathbb{R}): \varphi(A)=I_{3}\right\} & & \text { (By definition of ker } \varphi .) \\
& =\left\{A \in \mathrm{O}(2, \mathbb{R}): \varphi(A)=\left[\begin{array}{cc}
I_{2} & 0 \\
0 & 1
\end{array}\right]\right\} & & \text { (By definition of } \left.I_{3} .\right) \\
& =\left\{A \in \mathrm{O}(2, \mathbb{R}): A=I_{2}\right\} & & \text { (By definition of } \varphi .) \\
& =\left\{I_{2}\right\} & &
\end{aligned}
$$

which shows that φ is injective.
(b) We see that:

$$
\begin{align*}
\operatorname{Im} \varphi & =\{\varphi(A): A \in \mathrm{O}(2, \mathbb{R})\} & & \text { (By definition of Im.) } \\
& =\left\{\left[\begin{array}{cc}
A & 0 \\
0 & \operatorname{det}(A)
\end{array}\right]: A \in \mathrm{O}(2, \mathbb{R})\right\} & & \text { (By definition of } \varphi .) \\
& =\left\{\left[\begin{array}{cc}
A & 0 \\
0 & \pm 1
\end{array}\right]: A \in \mathrm{O}(2, \mathbb{R})\right\} . & & \text { (Since } A \in \mathrm{O}(2, \mathbb{R}) .)
\end{align*}
$$

Now let $S=\left\{A \in \mathrm{O}(2, \mathbb{R}): A\left(e_{3}\right)= \pm e_{3}\right\}$. By (\dagger) it is apparent that given any $A \in \operatorname{Im} \varphi$, we have $A\left(e_{3}\right)= \pm e_{3}$. Thus, it follows that $\operatorname{Im} \varphi \subset S$.
Now consider any matrix $A \in S$. If $A\left(e_{3}\right)=e_{3}$, then since $A \in \operatorname{SO}(3, \mathbb{R})$, from the discussions in class, it follows A is a rotation about the vector e_{3} (along the z-axis) by θ. Thus, A has form

$$
A=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right],
$$

which implies that $A \in \operatorname{Im} \varphi$. Suppose that $A\left(e_{3}\right)=-e_{3}$. Since $A \in \operatorname{SO}(3, \mathbb{R})$ represents a rotation about a vector on the unit sphere S^{2} centered at origin in \mathbb{R}^{3}, A has to be the counterclockwise rotation about the vector $e_{2}=(0,1,0)$ (along the y-axis) by π. Thus, $A\left(e_{2}\right)=e_{2}$, and furthermore, this rotation maps $e_{1}=(1,0,0)$ (along the x-axis) to $-e_{1}$ (i.e, $A\left(e_{1}\right)=-e_{1}$). Finally, since A is also linear map, it is completely determined by where it maps the basis elements e_{1}, e_{2}, e_{3}, and so we have

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \in \operatorname{Im} \varphi
$$

5. (Bonus.) Show that $\mathrm{SO}(3, \mathbb{R})$ has no proper normal subgroups.

Solution. Let $R(v, \theta)$ represent the counterclockwise rotation about a vector $v \in S^{2}$ by an angle θ. It is easy to see any two distinct points x, y (or vectors) in the unit sphere S^{2} lie on a unique diameter $D_{x, y} \subset S^{2}$. Now $D_{x, y}$ cuts S^{2} into two hemispheres. Let the vector representing the north pole northern hemisphere be denoted by $V_{x, y}$. Now consider the rotation $R\left(V_{x, y}, \theta_{x, y}\right)$, where $\theta_{x, y}$ is shorter distance in radians between x and y along the circle $D_{x, y}$. Then it is easy to visualize that

$$
R\left(V_{x, y}, \theta_{x, y}\right) \circ R_{x, \theta} \circ R\left(V_{x, y}, \theta_{x, y}\right)^{-1}=R_{x, \theta} .
$$

(Here we are assuming without loss of generality that $R\left(V_{x, y}, \theta_{x, y}\right)(x)=y$.) In other words, the rotation by a fixed angle about any two distinct vectors in S^{2} are conjugate. Therefore, any subgroup H of $\mathrm{SO}(3, \mathbb{R})$ has to contain rotations about all possible points in S^{2}, and the assertion follows.

