
Final Solutions

1. State whether the following statements are true or false. Please justify your
answers.

(a) A group cannot be isomorphic to any of its proper subgroups.

(b) If every proper subgroup of a group is cyclic, then the group is abelian.

Solution. (a) This statement is false. The additive group of integers Z is
isomorphic to each of its proper subgroups of the form kZ, for k ≥ 2. It can be
easily verified that the map

Z→ kZ : x 7→ kx,∀x ∈ Z

is an isomorphism.

(b) This statement is false. A counterexample to the statement is the nonabelian
group D6 = S3. We know that a proper subgroups of D6 is either of order 2 or 3.
Thus, every proper subgroup of D6 is cyclic.

2. Given a group G, let S = {aba−1b−1 : a, b ∈ G}. We define the subgroup

[G,G] := 〈S〉

to be the commutator subgroup or the derived group of G.

(a) Show that [G,G] CG.

(b) If N CG, then show that G/N is abelian if and only if [G,G] < N .

Solution. (a) Let H = [G,G], and denote the product aba−1b−1 by [a, b]. First,
we observe that for g ∈ G, we have

g[a, b]g−1 = g(aba−1b−1)g−1 = (gag−1)(gbg−1)(gag−1)−1(gbg−1)−1 = [gag−1, gbg−1].

Moreover, given h ∈ H, we have h =
∏k

i=1[ai, bi], where ai, bi ∈ G. Thus, for any
g ∈ G, we have

ghg−1 =
k∏
i=1

[gaig
−1, gbig

−1] ∈ H,

from which it follows that H CG.

(b) This follows from the following arguments.

G is abelian ⇐⇒ aNbN = bNaN, ∀a, b ∈ G (By definition of abelian property.)
⇐⇒ abN = baN,∀a, b ∈ G (By definition of product in G/N.)
⇐⇒ (ab)(ba)−1 = [a, b] ∈ N, ∀a, b ∈ G (By 2.2 (ii) of Lesson Plan.)
⇐⇒ [G,G] < N, (By definition of the derived group.)

and the assertion follows.

3. Given groups G,H, consider the set

Hom(G,H) = {ϕ : G→ H : ϕ is a homomorphism.}

(a) When H is abelian, show that Hom(G,H) forms an abelian group.

(b) Show that Hom(Z,Z) ∼= Z and for n ≥ 2, show that Hom(Zn,Z) is trivial.



(c) For m,n ≥ 2, show that Hom(Zm,Zn) ∼= Zd, where d = gcd(m,n).

Solution. (a) Without loss of generality, let us denote the operation on H by +
and the identity on H by 0. Given arbitrary ϕ1, ϕ2 ∈ Hom(G,H), consider the
natural binary operation · on Hom(G,H) defined by

(ϕ1 · ϕ2)(g) = ϕ1(g) + ϕ2(g), ∀g ∈ G.

Under the operation ·, Hom(G,H) forms an abelian group with the trivial homo-
morphism ϕ0 : G → H (i.e., ϕ0(g) = 0, ∀g ∈ G) as the identity. The inverse of
each ϕ ∈ Hom(G,H) is the map −ϕ : G → H defined by (−ϕ)(g) = −ϕ(g), for
all g ∈ G. The detailed verification of all group axioms is left as an exercise.

(b) We know from the discussions in class that given ϕ ∈ Hom(G,H) and g ∈ G
with o(g) < ∞, we have o(ϕ(g)) | o(g). Thus, since the order of each nontrivial
element in Z is infinite, we can infer that Hom(Zn,Z) is trivial.

Now, given a ϕ ∈ Hom(Z,Z), if ϕ(1) = k for some k ∈ Z, then for each z ∈ Z, we
have

ϕ(z) = zϕ(1) = zk.

So, any ϕ ∈ Hom(Z,Z) is uniquely determined by the value ϕ(1). Therefore, we
have Hom(Z,Z) = {ϕk : k ∈ Z}, where ϕk(1) = k ∈ Z. It is a straightforward
exercise to verify that the map Hom(Z,Z) → Z : ϕk 7→ k is an isomorphism.
(Verify this!)

(c) Let [k]` denote the residue class `Z+k. Since Zm = 〈[1]m〉, any homomorphism
ϕ : Zm → Zn is uniquely determined by ϕ([1]m). Again, we recall the fact that
given ϕ ∈ Hom(G,H) and g ∈ G with o(g) < ∞, we have o(ϕ(g)) | o(g). So,
it follows that o(ϕ([1])) | o([1]m) = m. Now let ϕk ∈ Hom(Zm,Zn) be such that
ϕ([1]m) = [k]n. Consider the map

Ψ : Hom(Zm,Zn)→ Zd : ϕk
Ψ7−→ [k]d.

Since d | n, [k]n = [k′]n =⇒ [k]d = [k′]d, it is a straightforward exercise to check
that Ψ is a well-defined epimorphism. (Verify this!)

It remains to be shown that Ψ is injective. First, we observe that:

ϕk([m]m) = ϕk([0]m) (Since m ≡ 0 (mod m).)

= [0]n (ϕk is a homomorphism.)

= mϕk([1]m) (ϕk is a homomorphism.)

= m[k]n (By definition of ϕk.)

(*)

Thus, we have that mk ≡ 0 (mod n), and so mk = n`, for some integer `. Setting
m′ = m/d and n′ = n/d, (*) would imply that:

k(m′d) = `(n′d) =⇒ k = `n′/m′. (**)

Since gcd(m′, n′) = 1, we see that m′ | `, and so it follows that

` ∈ {m′, 2m′, . . . , dm′},

and by (**), we have
k ∈ {n′, 2n′, . . . , dn′}.

Since there are exactly d distinct choices for k, we see that Ψ is injective.



4. Consider the map ϕ : O(2,R)→ SO(3,R) defined by

ϕ(A) =

[
A 0
0 det(A)

]
,

for all A ∈ O(2,R).

(a) Show that ϕ is a monomorphism.

(b) Show that Imϕ = {A ∈ SO(3,R) : A(e3) = ±e3}, where e3 =

0
0
1

.

Solution. (a) ϕ is clearly well-defined since given matrices A,B ∈ O(2,R) such
that A = B, we have

ϕ(A) =

[
A 0
0 det(A)

]
=

[
B 0
0 det(B)

]
= ϕ(B).

ϕ is a homomoprhism: Consider ϕ(AB) for arbitrary A,B ∈ O(2,R). Then we
have:

ϕ(AB) =

[
AB 0
0 det(AB)

]
(By definition of ϕ.)

=

[
AB 0
0 det(A) det(B)

]
(det is a homomorphism.)

=

[
A 0
0 det(A)

] [
B 0
0 det(B)

]
(By properties of matrix product.)

= ϕ(A)ϕ(B) (By definition of ϕ.),

which shows that ϕ is a homomorphism.

ϕ is injective: Let Ik be the k × k identity matrix. We have

ker ϕ = {A ∈ O(2,R) : ϕ(A) = I3} (By definition of ker ϕ.)

= {A ∈ O(2,R) : ϕ(A) =

[
I2 0
0 1

]
} (By definition of I3.)

= {A ∈ O(2,R) : A = I2} (By definition of ϕ.)

= {I2},

which shows that ϕ is injective.

(b) We see that:

Imϕ = {ϕ(A) : A ∈ O(2,R)} (By definition of Im.)

= {
[
A 0
0 det(A)

]
: A ∈ O(2,R)} (By definition of ϕ.)

= {
[
A 0
0 ±1

]
: A ∈ O(2,R)}. (Since A ∈ O(2,R).)

(†)



Now let S = {A ∈ O(2,R) : A(e3) = ±e3}. By (†) it is apparent that given any
A ∈ Imϕ, we have A(e3) = ±e3. Thus, it follows that Imϕ ⊂ S.

Now consider any matrix A ∈ S. If A(e3) = e3, then since A ∈ SO(3,R), from
the discussions in class, it follows A is a rotation about the vector e3 (along the
z-axis) by θ. Thus, A has form

A =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 , ($)

which implies that A ∈ Imϕ. Suppose that A(e3) = −e3. Since A ∈ SO(3,R)
represents a rotation about a vector on the unit sphere S2 centered at origin in R3,
A has to be the counterclockwise rotation about the vector e2 = (0, 1, 0) (along the
y-axis) by π. Thus, A(e2) = e2, and furthermore, this rotation maps e1 = (1, 0, 0)
(along the x-axis) to -e1 (i.e, A(e1) = −e1). Finally, since A is also linear map,
it is completely determined by where it maps the basis elements e1, e2, e3, and so
we have

A =

−1 0 0
0 1 0
0 0 −1

 ∈ Imϕ.

5. (Bonus.) Show that SO(3,R) has no proper normal subgroups.

Solution. Let R(v, θ) represent the counterclockwise rotation about a vector
v ∈ S2 by an angle θ. It is easy to see any two distinct points x, y (or vectors)
in the unit sphere S2 lie on a unique diameter Dx,y ⊂ S2. Now Dx,y cuts S2 into
two hemispheres. Let the vector representing the north pole northern hemisphere
be denoted by Vx,y. Now consider the rotation R(Vx,y, θx,y), where θx,y is shorter
distance in radians between x and y along the circle Dx,y. Then it is easy to
visualize that

R(Vx,y, θx,y) ◦Rx,θ ◦R(Vx,y, θx,y)
−1 = Rx,θ.

(Here we are assuming without loss of generality that R(Vx,y, θx,y)(x) = y.) In
other words, the rotation by a fixed angle about any two distinct vectors in S2

are conjugate. Therefore, any subgroup H of SO(3,R) has to contain rotations
about all possible points in S2, and the assertion follows.


